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\26 Plastic Scintillators in HEP

 Material of choice for hadron
calorimeters of currently operating
detectors

— Commercially available in the large
guantities needed for big detectors; plastic
scintillators are cheap

— They can be molded in any shape, provide
design flexibility

— They are fast: can provide info about
energy in event in time for online selection

 Plastic degrades during irradiations

— LHC detectors operate in unprecedented
hostile conditions
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& History of Scintillation Detectors

o
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* 1903: Crookes huilds first scintillation detector

— A film of ZnS, scintillating when hit by an a particle;
light detected by human operator (using
microscope...)

e 1944: Curran and Baker introduce the PMT

— Convenient replacement for naked eye; revives
Interest in scintillation detectors

* 1964: Birks “The Theory and Practice of
Scintillation Counting”

« ~1990: SSC experiments raise the threshold for
radiation tolerance

— Many lessons taken (and some forgotten...) in design
of LHC experiments

Ubi Crookes ibi lux
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& CMSHCAL Ageing
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« The CMS Hadron calorimeter uses plastic " CNIS preliminary
scintillator as active material ol | | - el
— It is know that radiation breaks the plastic and 08 ™™ e T
creates “color centers” which absorb 5 07 b I .
scintillation light 2 08 LR RRTRNS S
: : - 2 - [
 The crucial question: how long will it take £ *° | XA RE
e 04l ® L1,n=2.76, ~(6.5x6.5)cm”, CMS data, 2012 | [ . e
the HCAL to become dark? osll © L7n=283 ~taxtaent, oms data, 2012 ||| (% | ) |[}
. T | = - - x10)cm’ BN LR
— The lesson from 2012 data: shorter than it was 0.2} -.G.i‘jf’(":;f;fm?“ . EWRL Y Q\O
originally thought o~ Kur gzgz)m Bl
* R&D efforts aims at identifying a more e e B ?j
radiation-tolerant material usable in HCAL integrated Dose [irac]
Upgrade and future detectors After an irradiation of 10krad,
— Time scale: Long-Shutdown 3 upgrades we see the light-yield
(2024-2026) reduction predicted for 1Mrad
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. Measurements of radlatlon-mduced damage and
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thelr mterpretatlon
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% How does a Scintillator work?

« An organic scintillator is typically composed of
three parts

— A polymer base lonizati < ation of b last;
 Typically PVT, polystyrene, or silicon-based materials e e pe base plastic
— A primary dopant (~1%) 10~ 8m | | Forster energy transfer
- A §econdar¥ dopant (~0.05%) o 7 primary fluor
- Particles excite the base, the excitation of the S emit UV, ~340 nm 17 WH/WE)
base can migrate to the primary dopant, producing 194 v
detectable “ght é absorb UV photon secondary fluor

— In crystals, excitons transfer the energy; in liquids, (~0.05% wt/wt )

solvent-solvent interactions and collisions
* The secondary dopant shifts the light to longer
wavelengths, to make it more easily detected

— Maximize the overlap with the wavelength range at
which photodetectors are most efficient

emit blue, ~400 nm

absorb blue photon photodetector

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 6



QERSITJ,
<
O% A O«¢

VR Chemistry Refresher

1, S
TRYLAS

 Most common scintillator bases are PVT and
PS, all carbon-based
— The parts of interest are the C4Hg; aromatic cycles
« Carbon atom has four external electrons, all
participating in bond Sigma Bonds
_ One' of 2s2 electr.on's er)moted to 2p Ie.vel | sp® Hybridized orbitals
« The trigonal hybridization of sp3 orbitals is

luminescent
— One p orbital untouched (= electrons), the other
sp? orbitals mix into shared orbitals, at 120 H H
degre_es (o electrons) | | | p” —_
« At leading order, the light yield of the base is
proportional to the ratio of & to ¢ electrons

— More complex monomers enter the picture at NLO delocalized pi
— Maximal LY reached by anthracene C,,H;, 6 p, orbitals system
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& Commonly Used Polymers
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CH
StyfeneCH —CH CH¢ 2 methylmethacrylate
o 2 |
vinyltoluene O
Z N H,C o-CHs
CHj,
\ PVT PMMA
e.g.: EJ-200 e.g.. WLS fibers
Polystyrene CH PMMA added for com :
_ pleteness:
€.g.. SCSN-81 3 not used in scintillators!
CMS HCAL
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- Polymer Substrate Excitation

RIS
* Four excitation mechanisms: 2
1. Excitation into n-electron singlet state Singlet Triplet
2. lonization of n-electron 5 s, i
3. Excitation of electrons other than r-electron
4. lonization of electrons other than n-electron Sy leemmenneene. T
. with different outcomes: 5 A
1. Fast scintillation <
2. lon recombination leads to excited triplet or singlet - EAPUNY, VN N
electron states: slow scintillation s 'y S Vi inter-system
3. Thermal dissipation .
4. Temporary (Birks’ law) and permanent molecular damage bl T AT
« Typically, 2/3 of energy yields molecular excitation, Absarption Phosphor Lcence
1/3 goes to ionization . [y ly
— Scintillation probability for benzene ~ 10% S - YI ----------------- U
«  Multiply 2/3 by fraction of n-electrons S, S y = 00000 y
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@@2 Light Production — Stokes’ Shift

TRyLN
» Both ground and excited states have E
many vibrational sub-levels 5, Singlet Triplet
— Crucial feature is that inter-atomic spacing A
IS larger in excited states than in ground . o )
states, hence de-excitation goes to sub- s, s ** |
levels above groundS,, W {
» Non-radiative transition to S, follows f -------- XA T
» De-excitation path leads to separation s :;*1‘ ------------ —
between absorption and emission e
spectra: Stokes’ shift kL T L """
— Depends on environment around atom; how Absarpiion Phospharisscence
molecules are folded; proximity to other 5 S A I A
molecules; proximity of radicals 5 f R ——— g
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@@2 Light Production — Stokes’ Shift

TRyLN
- Both ground and excited states have .
many vibrational sub-levels o L 100

— Crucial feature Is that inter-atomic spacing ‘ Py PVT transmission
is larger in excited states than in ground o 02 I 1 i L
states, hence de-excitation goes to sub- % £ | | C
levels above ground Sy, e %% 5 I B 1% 3

* Non-radiative transition to S, follows E 04 ';55 ‘%} 140 g.
» De-excitation path leads to separation £ ¢ E </

between absorption and emission 2 02- {20

spectra: Stokes’ shift -

— Depends on environment around atom; how L s e e T P
molecules are folded; proximity to other e RS SR AR SN SR
molecules; proximity of radicals 5 __h__‘fY_a_”_‘_*_'?_'T__“‘ (_r_'T_) _____________ A S—

) Su
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L. [he Role of Dopants
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 Energy transfer from base to primary dopant o-Terphenyl
— Initial excitation transferred to dopants radiatively (in deep f% E:Eg
UV) or via dipole-dipole interactions (Forster mechanism) g iz o~ a5 8
- Non-radiative fraction increases with dopant concentration B o501 /’f "“\ o7 §
- Common prlmary dopantS: PTP (p-TerphenyI)’ PPO gﬁz_m 260 290 3.‘;.13 ST:‘I:I 41I|:| J-étl -d.'E:IEI 5:;:13 5::"(1'! E“}gE;E

Wavelangith{nm}

... and from primary to secondary dopant

— Radiative transfer

— Common secondary dopants: POPOP, TPB, K27, 3HF 2007 180~

S 1o (120 &

 Executive summary g i 100 S
3 080 (072 5

— Dopants shift wavelength of emission further away from < 080 -g_ggg
base-materlal absorptlon range n:mﬂm 2;‘;!:' EéIEI 330 3?:’-3 410 4IE|:| dEl‘.\ﬁ Eéii‘l &70 IEG1I:ZII:I.I:":IE

: . . . Wavalangth{nm)
* Note: Stokes’ shifts change when dopants mixed in with base
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 Dominant mechanism is damage to base material
— Dopants are mostly radiation-hard

« Two components to light-yield reduction of plastic scintillator
— Reduction of initial light yield

— Absorption of light produced by secondary dopant
» “Color centers” reduce the attenuation length

Effects of radiation:
Breaks polymer chains and create
radicals that absorb UV light
Irradiated scintillator turns dark

Some parameters to model radiation damage . ’
* Presence of oxygen " -

« Total irradiation dose and dose rate
« Temperature of irradiation

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 13
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/ Investigating Radiation Tolerance

« |dentify candidate materials offering improved

radiation tolerance

— Tune dopant concentration
— Emit at a longer wavelength

 |rradiate materials in different environmental
conditions, at different total doses and dose rates
— Radioactive sources (Co-60, Cs-137)
— LHC beam halo: CASTOR Radiation Facility

« Measure light yield with different and complementary

methods

— Spectrofluorometers, cosmic rays, radioactive sources
« Map light-yield reduction as a function of multiple

parameters

— O, concentration; total dose; dose rate; temperature;

dopant concentration...

11/20/2018
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Irradiation Facilities (1)

University of Maryland i -a--
« Co-60 source g
« 50-1500krad/hr i am——
(picture: TRIGA reactor...) L E BT

B
>

Goddard Space Flight Center

* Co0-60 source

* 0.3-100krad/hr

 Cold (-30C) and warm
irradiations

 (Co0-60 source

« 50-500krad/hr

« Cold (-30C) and
warm irradiations

;(_\ .
R
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Bunker Uvervieuw

CERN CASTOR Calorimeter Table
e LHC environment
* 0O(10) of CMS highest dose rate

CERN GIF++

« Cs-137 source
- 0.05krad/hr ’
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KA Spectrofluorometry (1)
TRYLAS
 Very challenging measurement 401 3% ———
. — Dominated b A, =2B3nm
— Typical user needs accurate measurement of peak 35 0% Y iy
positions, not peak amplitude sof e Faea (206137 o)

Face a (20153024 end)
Faca b (A1 88804 and)

* Tuned procedure until reached satisfactory level of

Relative fluorescence intensity (a.u.)

- -
25 Fece ¢ (207612126 and) i
re p € atab I I Ity 50 :_ Secand;:;f;i;z;i - _:
— Repeated measurements during a day vary within <2% - E
* Include uncertainty on machine conditions, placement of 15:_ B
sample by operator, inhomogeneity among sample sides 10— —
» Possible to probe effect of radiation on dopants 5j —
separately by varying excitation wavelength of 1

— E.g. blue scintillator: 285nm (excite primary), 350nm % '

o

(cross primary/secondary), 400nm (excite exclusively
secondary)

Wavelength {hm)
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Horiba Fluoromax4+

UMD-designed sample holder
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Spectrofluorometry (3)

_Excite primary dopant Excite secondary dopant
x1 x1
ﬂ"':g 40 [ I0 T T I T T T T I T T T T I T T T T I T T T T ﬂ"':g 6000 [ I0 I T T T I T T T I T T T I T T T I T T T I T T T I T B
3 B _ 3
o 3 - Aoret =285 Nm . o B Aot =400 Nm 7]
5 — - - -
> — y — = - - . —
E - EJ-200SP 1p (£ 60 %) ] E 5000 - EJ-200SP 1p (£ 60 %) .
'9 30 :_ MNon-irr. _: '9 : MNon-irr. :
= = ' — = S ' —
o o5 - 3 Mrad@10 krad/hr = o 4000 — 3 Mrad@10 krad/hr ]
CICJ - 59 days aft irr. - CICJ - 59 days aft irr. -
% = 3 Mrad@500 krad/hr ] % B 3 Mrad@500 krad/hr n
) 20— T 44 days aftirr. — © 3000 T 44 days aftimr. -
s g S .
© 15 — © ]
E - = 2 2000 —
o - - o _
(5] L — (5]
2 10 ] o .
. - - 1000 —]
0 | | | | 4 0 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 Y : -
R . 1 - - - - - -
o lT_ 1 .05 ot lT_
= IR =g 0.9
= =
2 O wwww” 2
» n 0.8
-g 0.9 s e LAt ' g
g 0-85 1 1 1 1 g 0-7 L 1 L 1 1 L 1
350 400 450 500 550 420 440 460 480 500 520 540
Wavelength (nm) Wavelength (nm)

« Technique allows one to understand effect of radiation on dopants
— One can excite dopants separately, and check efficiency of energy transfer between them
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Sy Transmission/Absorption

« CARY 300 UV-Visible spectrophotometer
— Double-beam mode to reduce uncertainties

 Measurement (somewhat) sensitive to bulk effects

" .
— Samples are 1-cm thick, completely traversed by _

LS

Incident light
— Measure annealing times of order ~ few weeks

* Absorption spectra used as input to GEANT To PMTs
simulations ey
— Important step in understanding plastic damage is “ o8 N

availability of tuned simulation of optical properties of ‘ :
plastic

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 20
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 Measurement details
— Commercial EJ-200
— 5.82Mrad at 80krad/hr, NIST
— Irradiation at 23C vs. -30C
— Samples annealed about 20 weeks at room
temperature
* Observations

— Peak at ~400nm (absorption maximum of
secondary dopant) seems to indicate some
damage of secondary dopants

» Less dopant to absorb light — higher transmittance

— Comparable transmittance above 410nm after
annealing

11/20/2018

Transmittance

Ratio - 1

@@} Transmittance Measurements

1 A A e e e e e e
0.8— - L Ll |
0.6 —

B EJ-200 1.0X 7]
04— (5.82Mrad@80krad/hr) —

: Non-irr. .—_
0.2 __ ------ 23°C (post-recovery) __

| -30°C (post-recovery) i

0 | | | —

P s e

2 il

. s

360 380 400 420 440 460 480 500

Wavelength (nm)
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« Sensitive to complete chain of light production
a-Source

— Source releases energy in the base, and the whole chain of
dopants and energy transfers is exercised

» Spectrophotometer cannot produce UV light to mimic base-to-
primary transfer

— Somewhat sensitive to bulk damage

* Energy released at small depth; light transverses about 1cm of
scintillator to reach PMT

* Provides complementary measurement to
transmission and emission spectra

— Closer to actual operation of scintillator in detector | R6019 PMT [ Sr?énerr"fest |
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KPR N
TRY LAY
. A ter-intuiti di Hatched area: systematic uncertainty
counter-inturave re-aiscovery g T A
— When the same dose is integrated over T Dark Current 3
a longer period, the damage is larger E Ca00e 1 (omieradiated s
. 10
* First reports of dose-rate f e E
dependency in '90 10°F | | E
— Working hypothesis: oxygen diffusion 10°F R e e e e g
Into plastic permits more reactions that 10°E -
create UV-absorbing radicals JF ¢ 3
. . . 107 g =
* Light yield decreases exponentially - -
as a function of integrated dose d:
d 108t s:xis
— The dose constant D increases as the 10-E| L, BRSO |
dose rate does -1 0 1 2 3 4 5 6 7 8

Energy [VXns]
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Dose-rate Effect (2)

L(d) = L(0)-exp(-d/D); d: dose, D: dose constant

)

- Radiation damage (per unit of integrated

§1 g2 L e | dose) increases at low dose rates
= F D= 1357R (fxed exponent . L3 — Power law between dose constant and dose
v [ CMS in-situ 8 TeV, laser Layer 1 « * ’ rate matches what we would expect under
S 40L| O cMSinsitusTev,laserlayer7| o 9® | O _ the assumption that oxygen diffusion drives
O TE L e o o 5 the dose-rate effect
8 - ] * Is oxygen diffusion driving the dose-rate
dependency?
g 1F + E
(e - -
o - i
10'1 = @ “Co, Biagtan 1996 (PS) =
N O %o, Biagtan 1996 (PVT) |
102 .
T R TETT BN AR TR T B SRR T BN AR RTT1T RS SRR ETTT EE R R AT AR Tt B =
10* 10° 1072 10" 1 10 10° 10°
JINST 11 T10004 Dose rate (krad/hr)
11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 24
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« Oxygen diffuses up to a depth z, into the substrate

— Diffusion depth proportional to 1/\@, where R is the dose rate

S

— Proportionality coefficient depends on diffusion constant,
solubility constant, oxygen pressure, and rate of formation of
radicals

» The absorption coefficient models the light output

— Defined as the product of the density of color centers and
their cross section for light absorption

— The color-center density and type depend on the presence of
oxygen

* The light yield can be written using a dose-rate-dependent
effective absorption coefficient
VR
a+bVR

— Observe VR dependence of dose constant for small dose
rates; expect D to tend to a constant value for high dose rates
(oxygen has no time to diffuse at all)

— Dose constant D =

= More to Dose-rate Effect

MytH2

Mo

o ——— -

L o« e M12zo—H2't

t : sample thickness

z,: oxygen diffusion depth

1. absorption coefficient in the
presence of oxygen

U, . absorption coefficient
independent of oxygen
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@’@} Variant Thickness Studies
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« Attempt at disentangling effect of oxygen
diffusion on absorption coefficient

— Measure effective absorption coefficient in
lab using transmission/absorption and a-
source measurements

« Laboratory measurements of samples

with different thickness used as inputs to ="

GEANT4 simulation : o {'ii
— Final goal is measurement of wavelength- I e S -
dependent absorption coefficients in ol i
oxygen-depleted vs oxygen-filled regions, ‘ + 6mm
and of diffusion depth z, vs radiation dose o | o depm

rate

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 26



QBRSITJ,

O%\ X OK\
18 56
& Very-Low Dose-Rate Studies
TRYLAS
* Lowest dose-rate measurement performed S 025 T I T
In-situ with HE laser and radioactive-source [ 7 GlFs+ Imadiated ,*H'I} -
calibration system 0.0pf. — Unimadiated I,** ¥ By -
— First results presented after integration of N i *ii ifl' \ ]
0.2Mrad in about two years of LHC operations - g / -
(2010-2012) 0.0151 | *a f* | E
« Continued to update results as more data were - # A ! E
collected 0.01— J ** J lh .
— Radiation effects on scintillator, wavelength- - ; 1 3 \ .
shifting fibers, and photosensors are combined 0.005 o i,,;f ' B
GIF++ facili ' imi r i M y -
. acility allows for probing similar dose : it o y :
rate as in the case of the HE detector ot e S N N
— Cs-137 source, dose rate ~ 50rad/hr -0t e 3 4o Er?ergy 7[’V><n5]8

— Irradiated samples measured in laboratory, and
radiation damage on plastic measured
independently of other contributions

2-year long irradiation at GIF++
~300kRad @ 50rad/hr
a-source measurement
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@@ Base-Material Studies
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* Investigation of scintillator produced with same dopant
configuration, and different base

— Green and blue fluors | |

— Normal concentration of fluors; over-doped primary (2x); —
over-doped secondary (2x)

— Polyvinyltoluene and polystyrene base

« CMS Hadron Calorimeter uses PS-based scintillator; EJ-260 PS
current commercial scintillators mostly PVT-based

— One note of interest: oxygen diffusion coefficient (measured
in cm?/s) is 13 times larger in PVT than in PS .

 Measurements on irradiated samples suggest that

PVT-based scintillators are more radiation-tolerant Co-60 Irradiation at NIST
than PS-based scintillators 7Mrad @ 500krad/hr

EJ-260 PVT

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 28



Over-doping Studies

EJ-200 1X1P PVT EJ-200 1X2P PVT EJ-200 2X1P PVT

] e

EJ-200 1X1P PS EJ-200 1X2P PS EJ-200 2X1P PS

« Polystyrene vs polyvinyltoluene blue scintillators; Co-60 irradiation, 7Mrad @ 500krad/hr
— 1X1P: commercial version; 1X2P and 2X1P: over-doped versions
* The concentration of the primary or secondary dopant is doubled
 Pictures suggest that over-doping helps preserve the scintillator clear, and confirm that PVT
seems to hold better than PS
— Measurement of dose constant reveals that over-doping marginally improves radiation tolerance
« Important note: the 1X1P and 1X2P samples annealed for about 12 hours longer than the 2X1P

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 29
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» Dose-Constant Summary
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« Basic model captures behavior of

plastic scintillator under irradiation in =~ T | o g W —e
large range of dose rates £ [ v uoscs oo |
— Ideally, would need more low-dose rates 2 | o oo osomseen A
to check behavior % oL e o o
* Quick take-home message from plot 8
— PVT performs better than PS g - % .
o) - 7
— Over-doping improves radiation tolerance © a _
marginally i ]
* More measurements available
. . 1 | | IIIIII| | | IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII|
— Some left out to avoid cluttering the plot, 102 Lot . ‘0 102 10

some need to be cross checked Dose rate (krad/hr)
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 Studies on scintillator properties performed
using 1x1x5cms3 rods

— Mechanical constraints imposed by
spectrophotometers
* Tiles in CMS HCAL are thin squares, with a
wavelength-shifting fiber inserted in a groove
close to the edge
— Typical size: 10x10x0.4cm?

— The o-tile design demonstrated to maximize
uniformity of light collection vs. particle crossing
position

* The light collected by the WLS fiber is then
transported to photosensors via a clear fiber

— Setup allows photosensors to be installed in an
area with lower radiation

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 31



« Comprehensive set of samples installed next
to LHC beam

— From scintillator in current HE to patent-pending
materials

« Each tile is connected to the CMS DAQ and
HCAL Calibration systems

— A laser fiber can excite directly each tile, and
provide a signal with known amplitude
* The system allows for the continuous
monitoring of scintillator ageing

— Irradiation conditions more closely match the
conditions of actual detectors

11/20/2018 A. Belloni :: Radiation Damage on Plastic Scintillators 32
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 Two rounds of irradiations, in different
position w.r.t. LHC beamline

— Investigated different range of dose rate

 Very challenging effort compared to
laboratory measurements

— Light collected via wavelength-shifting fiber
connected to clear fiber

— Photosensors also installed in radiation area

« Ongoing analysis of live data collected
during LHC operations
— One-time measurement of scintillator

performance in laboratory (after annealing)
useful to normalize results

N~
N —— X~

CRF Scintillator boxes
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“

JINST 13 P0O1002

« Test beam facility at CERN

— e 1
— Focused on 150GeV muon E ob -
sample (MIP) > wi 0.8
— Tracking information 0.7
provided by set of wire e 0.6
chambers 0 0.5
« Sample tiles connected to —20 Ei
full CMS HCAL DAQ chain —40p 0 5
— Test of both the scintillator ~60F Bt
and the data-acquisition T g0
system TS = S x [mm]
» Measured light-collection e . o
J CMS HCAL Wedge EJ-200: hit efficiency map

efficiency and yield
— A collection of unirradiated On-going measurement of uniformity of light

scintillator samples collection efficiency and light yield on irradiated tiles
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kR The CMS HGCAL
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* LHC experiments will undergo an important upgrade in
2024-2026 (Phase-Il Upgrades)

— Necessary to overcome HL-LHC challenges: high interaction
rate; significant radiation dose to be integrated over 10 years of
operations

 CMS Phase-Il Endcap calorimeter embraces the Particle-

Flow approach to calorimetry _ ‘-
— Design high-granularity detector to identify contribution from == 7
charged and neutral particles 2NN |
ZllliHENAN N , ..
« Key parameters of CMS HGCAL \: \ W\ |
A \://_\ \ / g
— 1.5<|n|<3.0 | ) N / TN
. . . NAN 7 N 1
— 600m? Si sensors; 500m? scintillator; 6M channels N E . 0
NN - / :
- CE-E 1=
. L § § N ///E \\\ AN \ . E
— Cu/CuW/Pb absorber; silicon sensors §§ \ §§ %§ : N j
28 layers; 25X, ~1.3) CEEff \
— ayers,; 0 . _ : § § %§ §%§ §
- CE-H A NN )
. L N
— Steel absorber silicon and scintillator NN =

— 24 layers; ~8.5\
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Mixed Si-scintillator layer
Boundary optimized vs radiation hardness
Scintillator too in cold volume (-30C)
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* Photosensor (SiIPM) mounted directly on tile
— Direct collection of scintillator light
— Tile wrapped with reflective cover
— Central dimple in tile optimizes light collection

« Cosmic-ray runs with prototype assembly
— CALICE AHCAL prototype (similar structure to CE-H)
tested at CERN Test Beam facility
 Scintillator tile and photosensor kept within the
cold volume (-30C) in HGCAL design

— Critical R&D question: how do scintillators behave
when cold?

56 SIPM-on-Tile Setup

250 hNpe_4

Entries 6189
Mean 3398
RMS 15.88
12 I mdf 95. TR T1
Width 2278+ 0,125
MP 31,368+ 018
Area S4TE L TOA
GSigma 8860+ 0.283

200

f-llllllll'

150

Entries

100

Central cell:
31.4 p.e./MIP

an
=

OrTTT L L

]

20 40 60 80 - ‘IUD 120
~ MIP response in SiIFM / p.e.
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Cold Scintillators
BC404 Overlay [All temperatures]

Don Lincoln

300 350 400 450 500 550 600

wavelength (nm)

* Pulse shape and timing unaffected by temperature
— Tested down to -180C (scintillator in liquid nitrogen)
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@@} Cold Irradiation Annealing

ARy LN

» Monitoring annealing of damaged s E5200PVT
scintillator 7
— 1x1x5cm?® samples of plastic s ;--_-i;—.—.— ;---—i ————————
scintillator § 10 'z%' 3
- . . . ) g 140
Light yield with a-source | S . R —
* Low temperature slows annealing, 120 |~ ) not kept in cold)
but no difference in permanent *} e o 01h (306G
damage w3
. . . . ' &
— Consistent with naive expectation that 60 sf'i: S 155 [300)
creation of radicals and their reaction .o
with diffused oxygen decrease with ° » 105 155 205 255 e
tem pe rature Days aft. irr.
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EJ200PVT-1X1P : (= EJ200BVT-1X1P
day aft. irr. 9 :
7 Mrada 74.4 krad/hre 23°C 7 ey mER b + 10 7 Mrade 74.9 krad/hra -30°C 99 duys aft. irr.
— 7 days aft. irr. 4

.............. Dark Current semsnnessnens Dark Current — 115 days aft. irr.

10°

56 days aft. irr.

Non-irradiated — Non-irradiated

136 days aft. irr.
120 days aft. irr. 107

150 days aft. irr.

136 days aft. irr.

-~ 199 days aft. irr. 199 days aft. irr.

HoR B
o 9 o9
AL RELL REl UL L L L Rl L

1 L1 R - : :
-1 0 1 2 3 4 5 6 7 8

Energy [VXns] Energy [VXns]
 Measured annealing (at room temperature) of samples irradiated at 23C and -30C
— Indication that temporary damage anneals completely after ~4 months
— Permanent damage is smaller in cold-irradiated samples
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& Photosensors Matter

RYLP Jim Hirschauer
 Design of radiation-tolerant detector must 5[ o Depths3 4@3mm) oo
. * Depths 1, 2 (2.8 mm)
Include all components ol o
— Lesson from CMS HE: observed light-yield é ] oL
reduction partially due to damage on g15f o .
photosensors (hybrid photo-diodes — HPD) % o 7
« And another part to damage to wavelength- E l o2 *
shifting fibers N s
« R&D effort devoted to characterizing 9
0 . . . .
0 1 2 3 4 5

radiation tolerance of photosensors

— Important contribution to detector design

Luminosity (ab™)

SiPM noise in 50ns gate
(~CMS Hadron Barrel light pulse)
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* Long-term prospective: 2030-2080

— FCC-hh: 100km, 100TeV

—ILC: 50km, ete™ at 1TeV

— CEPC/SppC: 50km/100km, 100TeV

« Design of future detectors already started

— R&D on granularity limits of noble liquid calorimeter

— Dual-readout calorimetry

e Cherenkov
« Scintillator
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4% Summary and Prospects

* Dose-rate effect and oxygen
— Observe dependence based on dose rate, and diffusion depth
Systematic study of radiation damage as a function of the scintillator composition

— (Marginal) indications that emitting at longer wavelengths and increasing dopant concentration improve
radiation tolerance

Irradiations in cold environment (-30C)

— Measurements do not seem to indicate cold is bad; on-going investigating at lower dose rates, to
understand temperature dependence of oxygen diffusion, quenching of radicals, damage on dopants

Modeling of radiation damage has multiple facets, with important correlations

— Extent of damage, and type of damage, depends on integrate dose, dose rate, atmosphere (oxygen
content and pressure), temperature, scintillator composition...

— Literally years of measurements, converging toward set of publications

Plastic scintillators are cheap, safe, and fit any detector design

— Increasing their radiation tolerance can provide a good candidate material for large detectors where the
expected integrated dose over the experiment lifetime is of the order of a few Mrad
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@@} (Surface) Annealing

ARy LN

« Monitor evolution of ratio between
Integrals of emission spectra (irradiated
vs. reference) to estimate annealing time 080 | l l

— Emission measurement sensitive to (mostly) o l 1T
LR

annealing of surface )

. ) . 0.770 1 7

— Faster annealing time w.r.t. transmission 11 % e
measurements | % care

T —Power (23°C)

» Consistent with being sensitive exclusively to w10 I K. H/T ~— Power (-30°C)
surface effect % ;
o - 1 -

Light Output

0 5 10 15 20 25
Days aft. irr.
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styrene
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polymerisation

»

Polymers

polystyrene
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